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Leveraging AI to advance psychological research for 
climate policy
Dhara Yu1, Bill D Thompson1 and Rachit Dubey2,3

Addressing climate change requires passing ambitious green 
policies, yet these policies often face significant public 
resistance. In this article, we highlight the potential of artificial 
intelligence (AI) to help overcome this challenge by deepening 
our understanding of the psychological factors influencing 
reasoning and decision-making about climate policy. We 
explore how AI can be leveraged as a tool to gain deeper 
insights into the factors driving public resistance, improve 
communication about policies, and aid the design of more 
effective, human-centered policies.
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Introduction
Can artificial intelligence (AI) help address the social 
and behavioral challenges fueling the climate crisis? At 
first glance, AI appears more likely to exacerbate the 
problem. The explosion of large-scale AI 
models — especially those generating human-like text 
and high-quality images — could strengthen the control 
of large corporations with little climate accountability 
[14,24], the very entities responsible for a significant 
portion of carbon emissions [23,54,62]. AI could be 
weaponized to propagate false narratives about climate 
change, threatening to further polarize the public 
[22,30]. On top of that, training large AI models requires 

vast amounts of energy, contributing to carbon emissions 
in its own right [35,37,63].

In light of these challenges, are there any ways AI can 
help rather than harm? We believe it could — if used as 
a tool to better understand the psychology of climate 
policymaking. Understanding how people reason about 
climate policies raises new psychological questions and 
offers a high-impact opportunity for psychologists to 
support progress on climate change.

Psychologists have increasingly turned their attention to 
climate policy, making important progress in under
standing what shapes public support and what drives 
resistance and polarization [19,53,67,68]. This includes 
factors such as political identity [19], social norms [12], 
elite cues [53], and perceived fairness [38]. In this ar
ticle, we highlight how AI can help advance this research 
by: (a) improving our understanding of the psychological 
factors that influence responses to policy solutions, (b) 
enhancing public understanding by clarifying complex 
climate policies in accessible ways, and (c) ultimately, 
helping to develop more human-centric climate policies 
informed by how people think and behave.

Why should psychologists focus on climate policy?
Policy is one of the most powerful levers for tackling 
climate change, yet its success depends on understanding 
human behavior and public opinion [67]. For example, 
even though policies like carbon taxes, renewable energy 
subsidies, and public transportation investments are 
proven mechanisms for reducing emissions [10,26,44], 
they are notoriously difficult to implement. While oppo
sition to such policies frequently stems from powerful 
interest groups benefiting from the status quo [23,62], a 
substantial barrier lies in the public’s disagreement over 
the best course of action [9,19,48].

Importantly, public resistance is not only driven by par
tisanship but also by crucial factors such as fairness and 
perceptions of who bears the costs of action [16]. Such 
concerns cut across ideological lines and can fuel backlash 
even against well-intentioned policies [39,42,59,61]. Un
derstanding these beliefs is essential for designing po
licies that are not only effective but also responsive to 
public concerns and more likely to gain broad support.

Psychologists are well-positioned to help address this 
challenge. But doing so effectively requires deeper 
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engagement with both policymakers — who shape and 
implement interventions — and social scientists, who 
can help contextualize behavioral insights in real-world 
settings. These collaborations can inform strategies to 
improve policy acceptance and increase the chances of 
successful implementation [21]. In the remainder of this 
article, we examine how AI tools can advance this in
terdisciplinary effort. Rather than replacing existing 
psychological research, we argue that AI can enhance it 
by identifying patterns in public reasoning at scale, 
generating and testing new policy framings, and aiding 
deliberative processes that can reveal common ground.

Use case 1: AI for identifying the 
psychological factors that influence support 
for policy solutions
Deciding to support or oppose a policy is fundamentally 
a cognitive process — it involves integrating multiple 
streams of information about the world and weighing 
psychological trade-offs that shape beliefs and actions. 
For example, policies like carbon taxes or EV rebates 
often raise concerns about economic costs, fairness, or 
social identity. Political scientists and psychologists have 
identified many psychological barriers to policy support, 
including mistrust, partisan cues, and social norms 
[12,20,52,58,67,68]. However, these factors are usually 
studied in isolation or through highly controlled, close- 
ended survey experiments, which limits our ability to 
understand the more nuanced ways people think about 
these policies. To develop more comprehensive psy
chological theories for climate policy, we need tools that 
enable fine-grained measurement of human behavior 
and large-scale data collection in real-world contexts.

AI can serve as an additional tool to investigate these 
new forms of data. By analyzing large-scale, unstructured 
data such as social media posts, news articles, or policy 
briefs, AI tools — particularly large language models 
(LLMs) — can be used to uncover the psychological 
barriers that exist in contexts beyond controlled labora
tory studies [15,25,41]. This approach complements ex
isting methods by identifying patterns in how people 
reason about and respond to climate policies in a variety 
of settings, providing a more comprehensive under
standing of the psychological factors at play.

LLMs can be particularly useful in extracting structured 
psychological features from free-form text [49], which in 
turn can be used to refine existing psychological theories 
and develop new ones in a data-driven fashion. For ex
ample, Bhatia et al. developed an LLM-based pipeline 
for automatically extracting cognitive features from a 
natural language dataset of everyday decision dilemmas, 
offering a more ecologically valid method for testing 
cognitive models of decision-making [7]. This work 
demonstrates the potential in combining psychological 

constructs and modern AI tools to predict behavior at 
scale. Similarly, Chang et al. used AI to analyze search 
engine queries to understand the factors behind vaccine 
hesitancy, identifying early adopters and holdouts and 
enabling a more nuanced analysis of vaccine skepticism 
than traditional surveys could provide [11].

These case studies provide a potential template for how 
we might apply AI methods to the domain of climate 
change. By analyzing behavioral data from diverse natur
alistic sources, AI can help identify patterns in sentiment, 
framing, reasoning, and values that shape how people 
conceptualize climate policies. For example, responses to 
carbon taxes might reveal concerns about fairness, while 
data on EV rebates could expose trade-offs between en
vironmental and economic concerns (refer to Figure 1, top 
panel). This approach can complement existing research 
on public opinion and political psychology, allowing re
searchers to link large-scale behavioral patterns to under
lying psychological mechanisms. Future studies, whether 
experimental or observational, could leverage these tech
niques to systematically analyze complex multimodal data, 
leading to more accurate models of policy acceptance and 
insights to improve public support for climate policies.

Use case 2: AI for clarifying climate policy 
communication
Characterizing the structure of beliefs about climate 
policy is an important first step toward overcoming the 
challenge of political polarization over proposed or ex
isting policy. Polarization often stems from how such 
policies are framed and understood differently across 
groups. A growing body of research shows that empha
sizing co-benefits, such as energy security or job creation, 
can broaden public support for climate policies 
[5,27,32,36,60,65]. AI offers new tools to complement this 
work by informing the development of more contextually 
relevant and precise climate policy communication.

Generative AI, like writing or mathematics, can be 
conceived of as a tool that may support learning. Viewed 
through this lens, AI acts as an interface to surface new 
factual information or the conception of alternative 
possibilities, making people aware of new ideas and 
helping them find common ground on polarizing topics 
[64]. In the context of climate policy communication, AI 
can be used to study the informational contingencies 
that shape people’s reasoning and conceptualizations, for 
instance, how exposure to certain messages affects how 
people construe complicated, abstract phenomena like 
environmental policies. Importantly, AI enables these 
explorations at a scale and level of personalization that 
were previously unattainable.

For instance, Dubey et al. used text-to-image generative 
AI models to help people imagine the possible 
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consequences of increased investment in public trans
port [17]. The study found that when American adults 
across the political spectrum viewed AI-generated vi
sualizations of car-free versions of various streets in 
America, they were able to more concretely understand 
the potential impacts of transportation policies (see 
Figure 1, middle panel). This study highlights AI’s 
ability to augment human imagination about climate 
policy outcomes while raising important psychological 
questions about the role of imagination and mental si
mulation in decision-making.

Building on these early successes, AI has the potential to 
help enhance clarity in climate policy communication by 

making complex concepts more concrete and accessible 
to diverse audiences. Currently, scientists, policymakers, 
and politicians design their own explanations, vignettes, 
and arguments to communicate climate policies in a 
largely ad-hoc fashion. However, these explanations may 
fail to resonate with their intended audiences [8]. AI 
could help overcome these challenges by automatically 
identifying which explanatory approaches are most 
clearly understood by different groups [47,72], and in 
parallel, enable large-scale empirical testing of these 
messages [2,43,69]. This approach can help us minimize 
researcher-imposed biases and discover improved ways 
to explain policies to audiences with different knowl
edge backgrounds, values, and concerns.

Beyond explanation, AI could also be a valuable tool for 
studying the factors that drive belief change. LLMs 
have shown potential in identifying persuasive argu
ments, predicting stances based on demographic in
formation, and predicting the appeal of specific 
arguments for given individuals [50]. Emerging evidence 
also suggests that interactions with LLMs can influence 
beliefs on contentious topics [13,55,70], though their 
effectiveness may vary depending on the context 
[18,64]. LLMs could thus be used to understand when 
and why people’s construals and beliefs change in the 
domain of climate policy.

The preliminary successes of AI in this area raise im
portant questions about research ethics and responsible 
use. While the prospect of AI as a tool for ‘superhuman 
persuasion’ has raised concerns, current evidence sug
gests that LLMs are not uniformly more persuasive than 
humans at crafting arguments [64]. We believe that in
stead of viewing AI as an agent for persuasion, a more 
constructive approach would be to treat it as a research 
tool for understanding how people process information 
and form beliefs about complex policy issues across 
different contexts and value systems.

Use case 3: AI for human-centered policy 
design
Our previous section centered on how AI can help 
people reach consensus over existing policies. Here, we 
explore a more speculative use case: using AI to assist in 
designing new climate policies that better integrate the 
perspectives of stakeholders and foster broader agree
ment. As with earlier examples, we emphasize AI as a 
tool to support human decision-making, not as an au
tonomous agent.

While reframing existing policies has shown some suc
cess in improving public support, it has inherent lim
itations. Reframing alone cannot fully circumvent deep- 
seated party differences, motivated reasoning, or poorly 
designed policies [6]. To overcome these barriers, we 

Figure 1  
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Use cases for AI in advancing climate policy communication and design. 
(1) Building on the methodology developed by Bhatia et al. [7], AI can 
help analyze unstructured participant data (e.g. opinions on carbon 
taxes or EV rebates) to map them onto latent psychological trade-offs. 
Layout reflects conceptual similarity, akin to a semantic or 
multidimensional scaling-like space [57]. (2) Based on Dubey et al. [17], 
AI can be used to enhance support for sustainable transport policies by 
helping people envision the positive outcomes of proposed policies, 
such as greener, more walkable cities. (3) Using the methodology 
developed by Tessler et al. [66], AI mediators can synthesize public 
critiques of policy proposals to identify points of agreement and refine 
policies, making them more acceptable and effective.  
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need new tools to help people collectively explore, 
evaluate, and reach consensus on policy solutions. 
Generative AI can serve as a component of this pipeline.

Recent work has highlighted the ability of AI to synthe
size varying perspectives on political issues [4,29,31,66]. 
Tessler et al. demonstrated that LLMs can be trained to 
produce a ‘group statement’ that can gain maximal en
dorsement from groups of people with potentially diverse 
views on a social, political, or moral issue [66]. Participants 
preferred AI-mediated statements over those written by 
trained and incentivized humans. These AI-mediated 
statements balanced the majority view while giving pro
minence to dissenting opinions, reducing polarization by 
surfacing common ground. Applied to climate policy, such 
a system could gather public opinions on contentious 
proposals and iteratively refine those policies to address 
diverse viewpoints, akin to a digital citizens’ assembly 
(refer to Figure 1, bottom panel).

Although these early successes are promising, real-world 
policy design raises additional behavioral challenges. 
Current AI approaches often optimize predefined ob
jectives without modeling the populations affected by 
the policy. A key next step would be to integrate richer 
behavioral models that predict how people will respond 
to new policies. LLMs offer potential in this area, en
abling simulation of more fine-grained and open-ended 
aspects of human behavior, going beyond simple eco
nomic games to more naturalistic decision-making di
lemmas [45,46]. For instance, LLMs could be used for 
lawmakers and policymakers to better appraise con
stituent support for certain climate policies by simu
lating the opinions of the population [34]. They could 
also help to better anticipate the factors that cause 
pushback against implemented policies, for instance, by 
simulating public reaction to a policy conditioned on 
demographic information.

However, the success of these approaches hinges on the 
accuracy of behavioral simulators. Current LLMs exhibit 
some success in recapitulating public opinion, but only 
when conditioned on specific demographic characteristics, 
and they remain far from perfect proxies for real populations 
[56]. More broadly, given the differences in LLM and 
human learning mechanisms [40], we should be cautious 
about relying on off-the-shelf LLMs as faithful simulators of 
human behavior. Empirical evaluation is critical to ensure 
that any form of behavioral modeling accurately reflects the 
beliefs and behaviors of actual people. Without robust va
lidation, the risk of misrepresentation could undermine AI’s 
utility in policy design [3,28].

Conclusion
AI has the potential to help us explain and predict 
human behavior for the purposes of reducing political 

polarization around climate policy and designing more 
effective policies. The first step toward this vision is 
large-scale data collection, cataloging people’s beliefs 
and construals of climate policy. This data could be ag
gregated from already-existing traces of internet beha
vior, such as web searches or social media interactions, or 
collected anew through large-scale experiments that 
allow for more open-ended expression in the form of 
natural language. We highlight that it is crucial to collect 
data from broadly sampled populations, across countries, 
both to understand the heterogeneity in people’s con
struals within and across societies, and to avoid excessive 
flattening of the complexity of human reasoning and 
behavior in these contexts [33,51,71].

AI is not a panacea; by itself, AI will not solve the be
havioral challenges of climate change. Its potential to 
improve public support for climate policies faces notable 
limitations. For instance, it remains uncertain whether 
AI can equally address the attitudes of all voters. 
Additionally, the same technologies that foster con
sensus could also be used to deepen divisions on climate 
issues [30]. Moreover, while public opinion is crucial, it 
does not necessarily translate directly into political ac
tion [1]. However, AI can serve as a tool to better predict 
and understand human behavior, from identifying 
common ground to simulating policy responses. When 
combined with insights from psychology, AI-enabled 
tools can help design policies that align with public va
lues and drive systemic change. Used responsibly, AI 
could accelerate progress towards enacting policies that 
preserve the well-being of our planet and its inhabitants.
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